Supersingular Isogeny
Diffie-Hellman

Deirdre Connolly
@durumcrus tulum







Algorithm

5
w |




Diffie-Hellman Key Exchange



Diffie-Hellman Key Exchange



Alice Bob

@ N @ Diffie-Hellman Key Exchange

+

+
- Secret colours -



Alice

|
A

Common paint

Secret colours

Bob

I KU

\
A

Diffie-Hellman Key Exchange



Alice Bob

Common paint
Secret colours
Public transport
(assume

that mixture separation
is expensive)

Nl
I A0

‘
'l
‘

!
A

\
A

Diffie-Hellman Key Exchange



Alice

ol @
A A

Bob

Common paint @

Secret colours @

Public transport
(assume

hat mixtur ration ™
that mixture separatio D

is expensive) -

+

Secret colours @

Diffie-Hellman Key Exchange



Alice Bob

Diffie-Hellman Key Exchange

Common paint
Secret colours
Public transport
(assume

that mixture separation
is expensive)

‘|

!
A

\
A

+|.

Secret colours

Common secret




Alice Bob
Diffie-Hellman Key Exchange

Common paint

Originally FFDH: key = g*° mod p

Secret colours

Public transport
(assume
that mixture separation
is expensive)

Exchange integers

I KU

'l
‘

!
A

.II“+|‘

\
A

+|.

Secret colours

Common secret




Alice
Diffie-Hellman Key Exchange

Common paint

Originally FFDH: key = g*° mod p

Secret colours

Exchange integers

i

|
A
\
A

Then ECDH: key = abP mod p

(assume Exchange points on curve

that mixture separation
is expensive)

!
A

.II“+|‘

\
A

+|.

Secret colours

Common secret




yv =z +ax+0b



yv =z +ax+0b



yv =z +ax+0b



o

yv =z +ax+0b



o
QS

o

o

v

yv =z +ax+0b



yv =z +ax+0b



yv =z +ax+0b



= (0

P+ P+ R

= —R=2PFP

P+ P

yv =z +ax+0b



= —R=2PFP

P+ P

IfIP = Q0,ord(P) =1

3 +ax+b

y* =



Alice Bob
Diffie-Hellman Key Exchange

Common paint

Originally FFDH: key = g*° mod p

Secret colours

Public transport
(assume
that mixture separation
is expensive)

Exchange integers

I KU

'l
‘

!
A

.II“+|‘

\
A

+|.

Secret colours

Common secret




Alice
Diffie-Hellman Key Exchange

Common paint

Originally FFDH: key = g*° mod p

Secret colours

Exchange integers

i

|
A
\
A

Then ECDH: key = abP mod p

(assume Exchange points on curve

that mixture separation
is expensive)

!
A

.II“+|‘

\
A

+|.

Secret colours

Common secret




Alice

Common paint
Secret colours
Public transport
(assume

that mixture separation
is expensive)

i

'
|‘

!
A

.II“+|‘

\
A

+|.

Secret colours

Common secret

Diffie-Hellman Key Exchange
Originally FFDH: key = g*’ mod p
Exchange integers

Then ECDH: key = abP mod p

Exchange points on curve




Alice
Diffie-Hellman Key Exchange

Common paint

Originally FFDH: key = g*° mod p

Secret colours

Exchange integers

i

|
A
\
A

Then ECDH: key = abP mod p

(assume Exchange points on curve

that mixture separation
is expensive)

!
A

.II“+|‘

\
A

+|.

Secret colours

Common secret




Alice

Common paint
Secret colours
Public transport
(assume

that mixture separation
is expensive)

i

|
A
\
A

)
A

\
A

+|.

Secret colours

Common secret

Diffie-Hellman Key Exchange
Originally FFDH: key = g*’ mod p
Exchange integers
Then ECDH: key = abP mod p
Exchange points on curve
Now SIDH:

key = ¢',($,(E) = ¢'y(8,(E))

Exchange whole curves






¢»:FE — E



¢»:FE — E
o(z,y) = (=, Y)



¢»:FE — E
o(z,y) = (=, Y)
$(0) =0






¢(ZL’, y) = —(.’L‘, y)












279

- ayw?,?z

























Grover's
Algorithm




Best known attacks

Classical: O(p'/*)
Quantum: O(p'/%)




Alice Bob



Alice Bob



Alice Bob

¢4 := E/(Ry) ¢p := E/(Rp)



Alice

¢4 :=E/(Ra)

E4 =_¢A(E)

Bob

E
¢p := E/(Rp)
Ep = ¢p(F)



Alice Bob

E E
¢4 :=E/(Ra) ¢p = E/(Rp)
E4s = ¢u(E) Ep = ¢p(E)









Alice Bob

E E
¢4 = E/(Ry) ¢ := E/(Rp)
E4s = ¢u(E) Ep = ¢p(E)
Ep ><EA

¢4 :=Ep/(¢p(Ra))  ¢p:=Ea/(da(RB))

Eap = ¢4(EB) Epa = ¢5(E4)
j(EaB) = j(EBa)












E/Fp:y*=z2°+

(P4, Qa) = E[2°7]



E/Fp:y*=z2°+

(P4, Qa) = E[2°7]

(Pp,@B) = E[3%]


















¢p := E/(Rp)
Ep ZZB(E)
< "

Ep = ¢p(F)



Ep = ¢B(F)

Eg,p5(Pa),¢B(Q4)






¢p := E/(Rp)
Ep :ZB(E)
< o)

Ea,¢4(PB),94(QB)















R = ¢4(RB)

(#4(Rp)) = ker(¢p)



R = ¢4(RB)

(#4(Rp)) = ker(¢p)

¢p = Ea/(pa(RB))






Epa = ¢p(Ea)

E/(Ra, Rp)






Lattice-based Crypto MQ@-based Crypto

Code-based Crypto

Hash-based Crypto




H.

’h ]




Lattice-based Crypto MQ-based Crypto

Code-based Crypto Hash-based Crypto

Isogeny-based



Efficient algorithms for supersingular isogeny
Diffie-Hellman

Craig Costello, Patrick Longa, and Michael Naehrig

Microsoft Research, USA

Abstract. We propose a new suite of algorithms that significantly improve the performance
of supersingular isogeny Diffie-Hellman (SIDH) key exchange. Subsequently, we present a
full-fledged implementation of SIDH that is geared towards the 128-bit quantum and 192-
bit classical security levels. Our library is the first constant-time SIDH implementation and
is up to 2.9 times faster than the previous best (non-constant-time) SIDH software. The
high speeds in this paper are driven by compact, inversion-free point and isogeny arithmetic
and fast SIDH-tailored field arithmetic: on an Intel Haswell processor, generating ephemeral
public keys takes 46 million cycles for Alice and 52 million cycles for Bob, while computing
the shared secret takes 44 million and 50 million cycles, respectively. The size of public keys
is only 564 bytes, which is significantly smaller than most of the popular post-quantum key
exchange alternatives. Ultimately, the size and speed of our software illustrates the strong
potential of SIDH as a post-quantum key exchange candidate and we hope that these results
encourage a wider cryptanalytic effort.

Keywords: Post-quantum cryptography, Diffie-Hellman key exchange, supersingular ellip-
tic curves, isogenies, SIDH.



Table 2. Performance results (expressed in millions of clock cycles) of the proposed SIDH implementation
in comparison with the implementation by Azarderakhsh et al. [2] on x64 platforms. Benchmark tests
were taken with Intel’s TurboBoost disabled and the results were rounded to the nearest 10° clock cycles.
Benchmarks were done on a 3.4GHz Intel Core i7-2600 Sandy Bridge and a 3.4GHz Intel Core i7-4770

Haswell processor running Ubuntu 14.04 LTS.

This work Prior work [2]
Operation Sandy Sandy
B Haswell Hiipe Haswell

Alice’s keygen 50 46 165 149
Bob’s keygen 57 52 172 152
Alice’s shared key 47 44 133 118
Bob’s shared key 55 50 137 122
Total 207 192 608 540

Remark 7. In Section 4 we discussed several specialized choices that were made for reasons unre-
lated to performance, e.g., in the name of simplicity and/or compactness. We stress that, should
future cryptanalysis reveal that these choices introduce a security vulnerability, the performance
of SIDH and the performance improvements in Sections 3 and 5 are unlikely to be affected (in
any meaningful way) by reverting back to the more general case(s). In particular, if it turns out
that sampling from a fraction of the possible 2- and 3-torsion subgroups gives an attacker some
appreciable advantage, then modifying the code to sample from the full set of torsion subgroups is
merely an exercise, and the subsequent performance difference would be unnoticeable. Similarly,
if any of (i) starting on a subfield curve (see Remark 2), (ii) using of the base-field and trace-zero
subgroups, or (iii) using the distortion map, turns out to degrade SIDH security, then the main
upshot of reverting to randomized public generators or starting on a curve minimally defined over
F,2 would be the inflated public parameters (see Section 6); the slowdown during key generation
would be minor and the shared secret computations would be unchanged.

8 BigMont: a strong ECDH+SIDH hybrid






| ] WALJLL I WALALLATTALAL/AL ‘

= bit-security classical 192 (SSDDH) 384 (ECDHP)
(hard problem) PQ 128 (SSDDH) 128 (SSDDH)
‘ public key size ‘ 564 ‘ 658 ‘
Alice’s keygen 46 52
speed Bob’s keygen 52 58
(cc x10°) Alice’s shared key 44 50
Bob’s shared key 50 57

In Table 3 we compare hybrid SIDH+ECDH versus standalone SIDH. The take-away message
is that for a less than 1.17x increase in public key sizes and less than 1.13x increase in the overall

computing cost, we can increase the classical security of the key exchange from 192 bits (based on
the relatively new SSDDH problem) to 384 bits (based on the long-standing ECDLP).

9 Validating public keys

Recall from Section 2 that De Feo, Jao and Plat [18] prove that SIDH is session-key secure
(under SSDDH) in the authenticated-links adversarial model [12]. This model assumes perfectly
authenticated links which effectively forces adversaries to be passive eavesdroppers; in particular,
it assumes that public keys are correctly generated by honest users. While this model can be
suitable for key exchange protocols that are instantiated in a truly ephemeral way, in real-world
scenarios it is often the case that (static) private keys are reused. This can incentivize malicious
users to create faulty public keys that allow them to learn information about the other user’s
static private key, and in such scenarios validating public keys becomes a mandatory practical
requirement.

In traditional elliptic curve Diffie-Hellman (ECDH), validating public keys essentially amounts
to checking that points are on the correct and cryptographically secure curve [8]. Such point
validation is considered trivial in ECDH, since checking that a point satisfies a curve equation
requires only a handful of field multiplications and additions, and this is negligible compared to
the overall cost (e.g., of a scalar multiplication).

In contexts where SIDH private keys are reused, public key validation is equally as important
but is no longer as trivial. In April 2015, a group from the NSA [28] pointed out that “direct
public key validation is not always possible for [...] isogeny based schemes” before describing
more complicated options that validate public keys indirectly. In this section we describe ways
to directly validate various properties of our public keys that, in particular, work entirely in our
compact framework, i.e., without the need of y-coordinates or of the Montgomery b coefficient
that fixes the quadratic twist.

Recall from Section 6 that an honest user generates public keys of the form



Validating public keys




ON THE SECURITY OF SUPERSINGULAR ISOGENY CRYPTOSYSTEMS

STEVEN D. GALBRAITH, CHRISTOPHE PETIT, BARAK SHANI, AND YAN BO TI

ABSTRACT. We study cryptosystems based on supersingular isogenies. This is an active area of research in post-quantum
cryptography. Our first contribution is to give a very powerful active attack on the supersingular isogeny encryption scheme.
This attack can only be prevented by using a (relatively expensive) countermeasure. Our second contribution is to show
that the security of all schemes of this type depends on the difficulty of computing the endomorphism ring of a supersingular
elliptic curve. This result gives significant insight into the difficulty of the isogeny problem that underlies the security of these
schemes. Our third contribution is to give a reduction that uses partial knowledge of shared keys to determine an entire shared
key. This can be used to retrieve the secret key, given information leaked from a side-channel attack on the key exchange
protocol. A corollary of this work is the first bit security result for the supersingular isogeny key exchange: Computing any
component of the j-invariant is as hard as computing the whole j-invariant.

Our paper therefore provides an improved understanding of the security of these cryptosystems. We stress that our work
does not imply that these systems are insecure, or that they should not be used. However, it highlights that implementations
of these schemes will need to take account of the risks associated with various active and side-channel attacks.

This is the full version of the paper: Steven D. Galbraith, Christophe Petit, Barak Shani and Yan Bo Ti, On the Security
of Supersingular Isogeny Cryptosystems, in J. H. Cheon and T. Takagi (eds.), Proceedings of ASIACRYPT 2016, Part I,
Springer Lecture Notes in Computer Science 10031 (2016) 63-91.

Keywords: Isogenies, supersingular elliptic curves.

1. INTRODUCTION

In 2011, Jao and De Feo [JF11] introduced the supersingular isogeny Diffie-Hellman key exchange protocol as a
candidate for a post-quantum key exchange. The security of this scheme is based on so-called supersingular isogeny
problems. Isogeny cryptosystems were first proposed by Couveignes [Cou06] and further developed in [RS06, Sto10].
The supersingular case was first developed in a hash function construction by Charles—Lauter—Goren [CLG09]. Sub-
sequently to the Jao and De Feo construction they have been used to build other cryptographic functions such as
public-key encryption, undeniable signatures and designated verifier signatures [FJP14, JS14, XTW12]. As with clas-




Given these roots, one can recover the j-invariant for a curve Ej in this path. Using the modular polynomials, we
can “travel back™ to find the j-invariant of the root E;. Indeed, suppose our path is £y = E,, E1,..., Eg. Then as
we know j(E,) for some d < k, we can use $, to compute j(F4_1) by solving ®5(j(E;),y) = 0. We get at most
3 candidates for j(E;_;), and we proceed recursively to find candidates for j(E4—2),...,7(Ep). Since the distance
from E; to the root E is short, this results in a small list of candidates for j(E).

We remark that in practice the polynomials G, G5 consist of many monomials, and therefore this approach would
require knowledge of many bits. However, Coppersmith’s method shows how to generate more relations, which help
to reduce the number of bits, and as an attack one can also rely on lattice algorithms working better in practice than
theoretically guaranteed.

5.2. Active Attack When Alice Uses a Static Key. We assume that Alice uses a static key for encryption or key
exchange. A legitimate key exchange protocol takes place between Alice and Bob, and an adversary Eve who sees
the protocol messages wishes to obtain the resulting shared j-invariant j4 5. Hence Eve knows (E, E4, E) and the
corresponding points.

We further assume that Eve can (adaptively) engage in protocol sessions with Alice (who always uses the same
static secret key) and that, through some side-channel or other means, Eve is able to obtain partial information on the
shared key computed by Alice on each protocol session.

Here, Alice acts as the oracle O that provides the partial information. Eve first observes a protocol exchange
between Alice and Bob, and so sees (Eg, ¢p(P4), 9p(Q4)). She learns some partial information on j(E4p).

Eve then chooses a small integer  coprime to Alice’s prime £, and as described above computes an isogeny ¢¢, the
curve E¢ and the corresponding points ¢ (P4), ¢c(Q4). She sends (E¢, ¢c(Pa), dc(Q4)) to Alice as part of a
key exchange session. Alice then computes E c = E¢/¢c(G 4) and some partial information about this j-invariant
j(Eac) is leaked. This leads to the scenario described in the isogeny hidden number problem, and using one of the
solutions to this problem yields the desired j-invariant j(E4p).

Note that this attack can be detected by the countermeasure of Kirkwood et al. [KLM™*15], since the query on E¢
is not on a correct execution of the protocol. However, the protocol still requires Alice to compute E 4¢ and so in the
context of a side-channel attack, an attacker might already have received enough information to determine the desired
secret key j(Eap).

6. CONCLUSION

We have given several results on the security of cryptosystems based on the Jao—De Feo concept. Our main con-
clusion is that it seems very hard to prevent all active attacks using simple methods. Our first active attack seems to
be undetectable using pairings or any other tools, as the curves and points appear to be indistinguishable from correct




Given these roots, one can recover the j-invariant for a curve E; in this path. Using the modular polynomials, we
can “travel back” to find the j-invariant of the root E,. Indeed, suppose our path is Ey = FE,, E1,..., E;x. Then as
we know j(E,) for some d < k, we can use @, to compute j(E4_;) by solving ®5(j(E;),y) = 0. We get at most
3 candidates for j(E;—1), and we proceed recursively to find candidates for j(E;_s),...,j(Ep). Since the distance
from E, to the root E; is short, this results in a small list of candidates for j(Es).

We remark that in practice the polynomials GG1, G2 consist of many monomials, and therefore this approach would
require knowledge of many bits. However, Coppersmith’s method shows how to generate more relations, which help
to reduce the number of bits, and as an attack one can also rely on lattice algorithms working better in practice than
theoretically guaranteed.

5.2. Active Attack When Alice Uses a Static Key. 'We assume that Alice uses a static key for encryption or key
exchange. A legitimate key exchange protocol takes place between Alice and Bob, and an adversary Eve who sees
the protocol messages wishes to obtain the resulting shared j-invariant j4 5. Hence Eve knows (E, E4, Ep) and the
corresponding points.

We further assume that Eve can (adaptively) engage in protocol sessions with Alice (who always uses the same
static secret key) and that, through some side-channel or other means, Eve is able to obtain partial information on the
shared key computed by Alice on each protocol session.

Here, Alice acts as the oracle O that provides the partial information. Eve first observes a protocol exchange
between Alice and Bob, and so sees (Eg, ¢5(Pa), ®5(Q4)). She learns some partial information on j(E4g).

Eve then chooses a small integer  coprime to Alice’s prime £, and as described above computes an isogeny ¢¢, the
curve E¢ and the corresponding points ¢c(Pa), dc(Qa). She sends (Ec, ¢c(Pa), pc(Qa)) to Alice as part of a
key exchange session. Alice then computes Exc = E¢/dc(G 4) and some partial information about this j-invariant
J(Eac) is leaked. This leads to the scenario described in the isogeny hidden number problem, and using one of the
solutions to this problem yields the desired j-invariant j(Eap).

Note that this attack can be detected by the countermeasure of Kirkwood et al. [KLM™*15], since the query on E¢
is not on a correct execution of the protocol. However, the protocol still requires Alice to compute E 4¢ and so in the
context of a side-channel attack, an attacker might already have received enough information to determine the desired
secret key j(Eag)-

6. CONCLUSION

We have given several results on the security of cryptosystems based on the Jao—De Feo concept. Our main con-
clusion is that it seems very hard to prevent all active attacks using simple methods. Our first active attack seems to
be undetectable using pairings or any other tools, as the curves and points appear to be indistinguishable from correct




Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies
Luca De Feo and David Jao and Jérome Plut, 2011

Efficient algorithms for supersinqular isogeny Diffie-Hellman
Craig Costello and Patrick Longa and Michael Naehrig, 2016

On the Security of Supersinqular Isogeny Cryptosystems
Steven D. Galbraith and Christophe Petit and Barak Shani and Yan Bo
Ti, 2016



https://eprint.iacr.org/2011/506.pdf
https://eprint.iacr.org/2011/506.pdf
https://eprint.iacr.org/2011/506.pdf
https://eprint.iacr.org/2011/506.pdf
https://eprint.iacr.org/2016/413.pdf
https://eprint.iacr.org/2016/413.pdf
https://eprint.iacr.org/2016/859.pdf
https://eprint.iacr.org/2016/859.pdf

NEEDS MORE

s
-
. &

LG




Supersingular Isogeny
Diffie-Hellman

Deirdre Connolly
@durumcrus tulum




